sexta-feira, 24 de setembro de 2010

Brasileiros descobrem pista para estudar a gravitação quântica

Fabio Reynol - Agência Fapesp - 24/09/2010

Brasileiros descobrem pista para estudar a gravitação quântica
A gravitação quântica é um fenômeno cuja medição direta é impraticável porque ela ocorre em locais inacessíveis ao homem, como o interior dos buracos negros.[Imagem: NASA/JPL-Caltech]
A medição direta dos efeitos da gravitação quântica é praticamente impossível. O motivo é que eles têm origem em locais inacessíveis ao homem, como em buracos negros. Além disso, seus efeitos são extremamente sutis.
Mas um grupo de físicos brasileiros desenvolveu um meio de estudar indiretamente um desses fenômenos, a flutuação da velocidade da luz.
Líquidos heterogêneos
A solução consiste em usar experimentos de propagação de ondas acústicas em fluidos com aleatoriedade, como em coloides, líquidos heterogêneos que contêm partículas ou moléculas de diferentes tamanhos em suspensão - o leite é um exemplo.
O trabalho foi realizado por Gastão Krein, do Instituto de Física Teórica (IFT) da Universidade Estadual Paulista (Unesp), Nami Svaiter, do Centro Brasileiro de Pesquisas Físicas (CBPF), e Gabriel Menezes, pós-doutorando da Unesp.
"Em uma conversa que tivemos com Svaiter, surgiu a ideia de que a propagação do som em fluidos coloides poderia apresentar efeitos similares aos da luz em ambientes nos quais a gravitação quântica seria relevante", disse Krein.
O encontro entre os físicos foi importante para a concepção da pesquisa, uma vez que Krein tem larga experiência em estudos com equações com flutuações aleatórias e Svaiter é especialista em gravitação quântica, tendo desenvolvido estudos de seus efeitos com Lawrence Ford, da Universidade Tufts, nos Estados Unidos.
Flutuações clássicas e quânticas
Flutuações em um fluido podem ser clássicas ou quânticas. O artigo demonstra que é possível usar microvibrações em coloides como uma plataforma para estudar a gravitação quântica. Segundo o estudo, os dois fenômenos são descritos por equações matemáticas similares.
Se trabalhos com coloides são comuns e conhecidos, o mesmo não se pode dizer do segundo fenômeno. Na gravidade quântica a velocidade da luz não é uma constante, como ensina a física clássica, mas flutua de um ponto a outro devido aos efeitos quânticos. Estima-se que esse tipo de gravidade esteja presente em buracos negros e tenha vigorado durante o Big Bang.
Outros experimentos já foram propostos para estudar a gravidade quântica, mas o trabalho dos brasileiros é o primeiro a contemplar o estudo das flutuações da velocidade da luz através das flutuações da velocidade de propagação de ondas acústicas em fluidos.
Segundo Krein, o mérito da pesquisa foi ter apontado um meio de simular em laboratório um fenômeno de observação não possível atualmente. "O comportamento das ondas sonoras ao se propagar em um meio aleatório, como os coloides, permite trazer para o laboratório efeitos análogos aos da gravitação quântica", disse.
Radiação Hawking
Krein e colegas pretendem usar os modelos com fluidos para estudar o equivalente a um buraco negro e como vibrações acústicas quânticas são criadas e destruídas próximo a essas formações no espaço.
Os físicos buscam compreender melhor o fenômeno conhecido como "radiação Hawking", prevista em 1973 pelo físico inglês Stephen Hawking. Segundo Hawking, os buracos negros encolhem com a perda de energia por meio dessa radiação.
Krein, Svaiter e Menezes procuram também grupos experimentais de pesquisa que investiguem fluidos e se interessem em fazer experimentos nessa área.
"Com um fluido, podemos controlar parâmetros do experimento, como a densidade e a concentração das partículas em suspensão, e, com isso, aprender como muda a propagação do som de maneira controlável no laboratório. Isso permitirá construir correlações dos resultados com o que ocorre na gravitação quântica", disse Krein.
Bibliografia:

Analog Model for Quantum Gravity Effects: Phonons in Random Fluids
G. Krein, G. Menezes, N. F. Svaiter
Physical Review Letters
20 September 2010
Vol.: 105, 131301
DOI: 10.1103/PhysRevLett.105.131301

LHC detecta fenômeno físico potencialmente desconhecido

LHC detecta interligações inéditas entre partículas

Imagem de uma colisão próton-próton captada pelo experimento CMS, que produziu mais de 100 partículas carregadas.[Imagem: Cern]
Interligação entre partículas
Depois de quase seis meses de operação, as experiências no LHC estão começando a ver "sinais de efeitos potencialmente novos e interessantes".
Nos resultados divulgados pelos cientistas do experimento CMS, um dos quatro grandes detectores do LHC, foram observadas correlações até agora desconhecidas entre as partículas, que foram geradas durante colisões próton-próton realizadas a uma energia de 7 TeV.
Uma centena ou mais de partículas podem ser produzidas durante as colisões próton-próton. Os cientistas do CMS, aí incluído um grupo de brasileiros, estudam essas colisões medindo as correlações angulares entre as partículas conforme elas se espalham a partir do ponto de impacto - a foto mostra um "mapa" de um desses espalhamentos.
As análises revelaram que algumas das partículas se espalham seguindo o mesmo ângulo, o que pode demonstrar que elas estão intimamente interligadas, de uma forma nunca antes vista em colisões de prótons.
Em busca das explicações
O efeito é sutil e muitos cruzamentos e checagens tiveram que ser feitas para confirmar que ele é real.
Segundo os cientistas, o efeito, para o qual eles ainda não têm uma explicação, se parece com aqueles observados nas colisões de núcleos no laboratório RHIC, localizado no Laboratório Nacional Brookhaven, nos Estados Unidos - vejaDescoberta antimatéria que cria nova tabela periódica e Descoberta partícula de antimatéria mais estranha já vista.
No entanto, durante uma apresentação feita pelos cientistas do CMS aos demais pesquisadores do CERN, eles destacaram que há várias explicações possíveis a serem consideradas.
A apresentação centrou-se em mostrar os resultados experimentais com o objetivo de promover uma discussão mais ampla sobre o assunto e, só então, apresentar explicações para essa "conexão" entre as partículas.
O LHC continuará acelerando e colidindo prótons até o final de outubro, acumulando mais dados que poderão ajudar a entender o fenômeno. No restante de 2010, o LHC irá colidir núcleos de chumbo.
Do que são feitos os quarks
Nessa nova etapa, será a vez do detector ALICE, otimizado para estudar colisões de núcleos. O principal objetivo do ALICE é estudar a matéria no estado quente e denso que teria existido apenas pequenas frações de segundo após o Big Bang.
Nesses experimentos, os cientistas esperam compreender como a matéria evoluiu para a matéria nuclear ordinária que compõe o Universo, sem sinais da antimatéria correspondente - presume-se que o Big Bang tenha criado quantidades iguais de matéria e de antimatéria.
Outro detector do colisor de partículas, chamado LHCb, recentemente detectou quarks excitados. Até agora acreditava-se que os quarks fossem os componentes mais básicos que formam todas as partículas conhecidas. Mas a presença de quarks excitados pode indicar que "subpartículas" estejam se rearranjando para alterar o estado de energia desses quarks.
O LHC, que é o maior laboratório científico do mundo, acelera partículas ao longo de seu anel de 27 km, arremessando-as umas contras as outras em busca de inúmeras respostas, mas de uma especificamente que parece desafiar o bom senso: de onde surge a massa das partículas - ou, dito de outro modo, o que faz com que a matéria seja matéria.
Nessa busca, contudo, ainda não foram encontrados nem mesmo "sinais potencialmente novos e interessantes". Por outro lado, em seu primeiro artigo científico, o LHC confirmou uma teoria do físico brasileiro Constatino Tsallis.
Bibliografia:

Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC
CMS Collaboration
arXiv
21 Sep 2010
http://arxiv.org/abs/1009.4122